Drift of Scroll Wave Filaments in an Anisotropic Model of the Left Ventricle of the Human Heart

نویسندگان

  • Sergei Pravdin
  • Hans Dierckx
  • Vladimir S. Markhasin
  • Alexander V. Panfilov
چکیده

Scroll waves are three-dimensional vortices which occur in excitable media. Their formation in the heart results in the onset of cardiac arrhythmias, and the dynamics of their filaments determine the arrhythmia type. Most studies of filament dynamics were performed in domains with simple geometries and generic description of the anisotropy of cardiac tissue. Recently, we developed an analytical model of fibre structure and anatomy of the left ventricle (LV) of the human heart. Here, we perform a systematic study of the dynamics of scroll wave filaments for the cases of positive and negative tension in this anatomical model. We study the various possible shapes of LV and different degree of anisotropy of cardiac tissue. We show that, for positive filament tension, the final position of scroll wave filament is mainly determined by the thickness of the myocardial wall but, however, anisotropy attracts the filament to the LV apex. For negative filament tension, the filament buckles, and for most cases, tends to the apex of the heart with no or slight dependency on the thickness of the LV. We discuss the mechanisms of the observed phenomena and their implications for cardiac arrhythmias.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correction: Electrical Wave Propagation in an Anisotropic Model of the Left Ventricle Based on Analytical Description of Cardiac Architecture

We develop a numerical approach based on our recent analytical model of fiber structure in the left ventricle of the human heart. A special curvilinear coordinate system is proposed to analytically include realistic ventricular shape and myofiber directions. With this anatomical model, electrophysiological simulations can be performed on a rectangular coordinate grid. We apply our method to stu...

متن کامل

Scroll wave drift along steps, troughs, and corners.

Three-dimensional excitable systems can create nonlinear scroll waves that rotate around one-dimensional phase singularities. Recent theoretical work predicts that these filaments drift along step-like height variations. Here, we test this prediction using experiments with thin layers of the Belousov-Zhabotinsky reaction. We observe that over short distances scroll waves are attracted towards t...

متن کامل

A New Minimum Order Lumped-Parameter Model of Circulatory System for Patients with Suffered Left and Right-Sided Heart Failure

In this study a new minimum lumped electrical model of total circulatory system through numerical solutions to approximate the response of the human circulatory system was presented. Among five existent ventricular elastances as activity function of heart pumps, a more accurate model was chosen as well as the operation of baroreflex system to accommodate variations in heart rate and systemic va...

متن کامل

The Effect of Endurance Activity on Expression of sox6 Gene of Left Ventricle in Male Wistar Rat

Background & Aims: The expression of myocardium gene can be affected by endurance activity; besides, sox6 transcription factor influences its formation. This study aimed to investigate the effect of 14 weeks of endurance activity on expression of sox6 gene of left ventricle in male Wistar rats. Methods: Forteen rats were housed under the controlled conditions and after adjusting with endurance ...

متن کامل

Gross anatomy of the heart in Ostrich (Struthio camelus)

Today, with emphasis on the mechanical heart and heart transplantation from one human to another andone species to another, a knowledge of the anatomy of the bird’s heart could contribute to theseaccomplishments. Eight male adult ostriches were used to study the heart macroscopically. This studyrevealed that the ostrich heart has some different features from the other birds. In the ostrich, fib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015